Package: MRFA 0.6

MRFA: Fitting and Predicting Large-Scale Nonlinear Regression Problems using Multi-Resolution Functional ANOVA (MRFA) Approach

Performs the MRFA approach proposed by Sung et al. (2020) <doi:10.1080/01621459.2019.1595630> to fit and predict nonlinear regression problems, particularly for large-scale and high-dimensional problems. The application includes deterministic or stochastic computer experiments, spatial datasets, and so on.

Authors:Chih-Li Sung

MRFA_0.6.tar.gz
MRFA_0.6.zip(r-4.5)MRFA_0.6.zip(r-4.4)MRFA_0.6.zip(r-4.3)
MRFA_0.6.tgz(r-4.4-any)MRFA_0.6.tgz(r-4.3-any)
MRFA_0.6.tar.gz(r-4.5-noble)MRFA_0.6.tar.gz(r-4.4-noble)
MRFA_0.6.tgz(r-4.4-emscripten)MRFA_0.6.tgz(r-4.3-emscripten)
MRFA.pdf |MRFA.html
MRFA/json (API)

# Install 'MRFA' in R:
install.packages('MRFA', repos = c('https://chihli.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.80 score 21 scripts 181 downloads 3 mentions 6 exports 19 dependencies

Last updated 1 years agofrom:1d414715d5. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 13 2024
R-4.5-winOKNov 13 2024
R-4.5-linuxOKNov 13 2024
R-4.4-winOKNov 13 2024
R-4.4-macOKNov 13 2024
R-4.3-winOKNov 13 2024
R-4.3-macOKNov 13 2024

Exports:aic.MRFAbic.MRFAconfidence.MRFAcv.MRFAMRFA_fitpredict.MRFA

Dependencies:codetoolsdotCall64fieldsforeachglmnetgrplassoiteratorslatticemapsMatrixplyrrandtoolboxRcppRcppEigenrngWELLshapespamsurvivalviridisLite